

Journal of Organometallic Chemistry 657 (2002) 146-154



www.elsevier.com/locate/jorganchem

### Reactivity of some poly-1-alkynylsilicon and -tin compounds towards triallylborane—routes to novel heterocycles

Bernd Wrackmeyer<sup>a,\*</sup>, Moazzam H. Bhatti<sup>a,b</sup>, Saqib Ali<sup>b</sup>, Oleg L. Tok<sup>a,c</sup>, Yuri N. Bubnov<sup>c</sup>

<sup>a</sup> Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitatsstr. 30, NW 1, D-95440 Bayreuth, Germany <sup>b</sup> Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan

<sup>c</sup> Nesmeyanow Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 117813 Moscow, Russia

Received 3 September 2001; accepted 15 February 2002

#### Abstract

Triallylborane reacts with most poly-1-alkynylsilanes (1–5), containing up to four C=C units, or di(1-alkynyl)tin compounds (6) to give either siloles (8, 11, 14, 16), as the result of an intermolecular 1,1-allylboration followed by an intramolecular 1,1-vinylboration, or the novel 2-alkylidene-1,3-silaborolene (9) or 2-alkylidene1,3-stannaborolene derivatives (17), as the result of intermolecular 1,1-allylboration followed by an intramolecular 1,2-allylboration. In the case of the borolene derivatives, a second intramolecular 1,2-allylboration takes place to give 1,7-borasila- or 1,7-borastannabicyclo[4.3.0]nona-5,8-diene derivatives (10, 12, 13, 15, 18). If the starting materials are di(1-alkynyl)methylsilicon hydrides (2), the latter reaction affords selectively only one diastereomer (10(H)). All products were characterised by extensive multinuclear magnetic resonance spectra (<sup>1</sup>H-, <sup>11</sup>B-, <sup>13</sup>C-, <sup>29</sup>Si-, and <sup>119</sup>Sn-NMR). © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Organoboration; Alkynes; Siloles; Heterocycles; NMR; Multinuclear

#### 1. Introduction

1,1-Organoboration of 1-alkynylmetal compounds [1,2] provides useful routes to numerous heterocycles. Among these, in particular the metalloles **C** are important examples [3], and the mechanism of their formation has been firmly established by isolating the intermediates of type **B** (formed in the reaction of di(1-alkynyl)metal compounds with triorganoboranes; Scheme 1), and characterising them by NMR in solution and in the solid state as well as by crystal structure analysis [2,4–7]. The zwitterionic intermediates of type **B** are precursors of the metalloles **C**, if an intramolecular vinylboration takes place. Although the product distribution depends on the groups R<sup>1</sup> and R, there are many combinations of R<sup>1</sup> and R for which the metalloles are formed selectively [1,2,4–8].

\* Corresponding author. Fax: +49-921-552157. *E-mail address:* b.wrack@uni-bayreuth.de (B. Wrackmeyer). Triallylborane, All<sub>3</sub>B, possesses unusual properties when compared with other triorganoboranes [9]. We have already shown that All<sub>3</sub>B is extremely reactive, much more than Et<sub>3</sub>B, towards 1-alkynylsilanes [10,11], -germanes and -stannanes [12]. For such alkynes it has become evident that 1,2-allylboration can compete with 1,1-allylboration, although the latter reaction appears to be dominant, at least in polar solvents [11,12]. In any case, these recent results prompted us to explore the reactivity of various poly-1-alkynylsilanes and -stannanes 1-6 (Scheme 2) towards triallylborane.

#### 2. Results and discussion

## 2.1. Reactions of the bis(1-alkynyl)silanes **1a**–**d** and **2b**–**d** with triallylborane

The reaction of 1a-d or 2b-d with triethylborane requires prolonged heating at 100 °C, and siloles of type C have been reported as the final products [13,14].





Scheme 3.

Scheme 3 summarises the results of the reactions of 1a-d and 2b-d with triallylborane All<sub>3</sub>B. With 1a, a new type of heterocycle 9a was formed selectively when the reaction mixture was kept at room temperature for several days; the formation of a silole was not observed at all. After heating at 65 °C in CDCl<sub>3</sub> for 60 h, 9a rearranged into 10a by intramolecular 1,2-allylboration of one of the terminal C=C bonds. In order to induce

any reaction of 1b with All<sub>3</sub>B prolonged heating at 65 °C was required, and therefore, **9b** was not observed; instead the bicyclic compound 10b was formed selectively. In contrast, the reaction of 1c with All<sub>3</sub>B did not lead to any cyclic compound; the non-cyclic compound 7 was obtained selectively. The reaction of 1d with All<sub>3</sub>B afforded a 4:1 mixture of 8d and 10d. The formation of the silole 8d can be understood as the result of an 1,1allylboration followed by an intramolecular 1,1-vinylboration, as shown in Scheme 1. It is conceivable that the new heterocycles 9 are formed by a stereoselective intermolecular 1,1-allylboration in the initial step, as in A (Scheme 1), followed by an intramolecular 1,2allylboration (instead of the intramolecular 1,1-vinylboration, **B** and **C** in Scheme 1). The intermediate **B** (Scheme 1) might be the same, both for 1,2-allylboration and 1,1-vinylboration (although, a six-membered transition state is proposed in general for the former type of reaction [9]). The conversion into the bicyclic compounds 10 is the result of another intramolecular 1,2allylboration which requires more severe reaction conditions, a common reaction in the chemistry of allylboranes [9].

In the case of the silanes 2b-d, the reactions with triallylborane proceeds mainly in the same way as for 1 (Scheme 3). Thus, the only product from the reaction of 2c with All<sub>3</sub>B is the non-cyclic 7(H), whereas the new heterocycles 10(H)b and 10(H)d were obtained selectively by starting from 2b to 2d. Interestingly, only one of the possible diastereomers of both 10(H)b and 10(H)d is formed, in which, according to  ${}^{1}H{-}^{1}H$  NOESY spectra, the C(3)-allyl and the SiMe groups are in *cis*positions. The proposed route to 10(H) is shown in Scheme 4. Presumably, this can be traced to steric interactions in the transition state.

### 2.2. Reactions of the triyne **3** and of tetrakis(trimethylsilylethynyl)silane **4** with triallylborane

Compound 3 contains three reactive C=C bonds. Depending on the attack of All<sub>3</sub>B either at a Me<sub>3</sub>Si-C= or a Me<sub>2</sub>Si-C= bond, different products can be expected [15,16]. The NMR analysis of the reaction mixture revealed the presence of three products (1:3:3 ratio), the silole 11 and the heterocycles 12 and 13





(Scheme 5). This mixture is best analysed by <sup>29</sup>Si-NMR (Fig. 1). If one of the  $Me_2Si-C\equiv$  bonds is attacked (Scheme 5a; intermediate not isolated or detected), the silole **11** can be formed, and there is no easy way for **11** to undergo further intramolecular reactions. However, if the reaction starts at one of the  $Me_3Si-C\equiv$  bonds (Scheme 5b) intermediates as shown (not isolated or detected) can be formed, and further intramolecular reactions can lead either to **12** or to **13**.

The reaction of **4** with triallylborane afforded a mixture consisting mainly of two compounds (Scheme 6), the silole **14**, corresponding to type **C**, and the bicyclic compound **15**, in a molar ratio of 1:5. An excess of All<sub>3</sub>B did not induce further reactions with the remaining C=C bonds even upon prolonged heating. Surprisingly, considering the high reactivity of triallylborane, this is in contrast with the reaction of Et<sub>3</sub>B with **4** [17].



Fig. 1. <sup>29</sup>Si{<sup>1</sup>H}-NMR spectrum (99.4 MHz) (refocused INEPT [23] with <sup>1</sup>H decoupling) of the reaction mixture containing **11**, **12** and **13** in CDCl<sub>3</sub> solution. The signals of the starting trivne **3** are marked by full circles. The assignment is based on characteristic chemical shifts  $\delta^{29}$ Si and on <sup>29</sup>Si satellites (not shown) due to <sup>*n*</sup>J(<sup>29</sup>Si, <sup>29</sup>Si).



2.3. Reaction of the bis(1-alkynyl)silane 5 with triallylborane

In the compound **5**, the silicon atom bears two different 1-alkynyl groups: the one with the terminal Me<sub>3</sub>Sn group is known to react readily with triorganoboranes [16]. Therefore, the reaction with All<sub>3</sub>B followed the mechanism outlined in Scheme 1, starting by 1,1-allylboration of the C=C-SnMe<sub>3</sub> unit. After this first step, fast intramolecular 1,1-vinylboration took place (products from 1,2-allylboration were not observed), and the silole **16** was formed selectively (Scheme 7). The finding that the Me<sub>3</sub>Sn group is linked to C-2, the boryl group to C-4, and the Me<sub>3</sub>Si group to C-5 strongly supports the proposed mechanism.

# 2.4. Reaction of the bis(1-alkynyl)dimethyltin compounds **6a** and **6d** with triallylborane

The 1-alkynyltin compounds reacted with triallylborane already at low temperature ( < -20 °C), and the reactions were complete at room temperature. In the case of **6a**, the heterocycle **17a** was formed selectively (Scheme 8). Heating of **17a** in boiling toluene induced further intramolecular 1,2-allylboration to give the bicyclic compound **18a** (see Fig. 3 for the change in the <sup>13</sup>C-NMR signals of the ring carbon atoms) which corresponds to the silicon compounds **9a**, **10a**,**b**, **13** and **15**.

The reaction of **6d** with triallylborane gives at first **17d** (see Fig. 2 for the <sup>29</sup>Si-NMR spectrum) together with small amounts of unidentified products (apparently as a result of exchange reactions, similar to those observed for the reaction of All<sub>3</sub>B with Me<sub>3</sub>Sn-C=C-SiMe<sub>3</sub> [12]). Compound **17d** rearranges slowly at room temperature into **18d**. By monitoring the reaction of **6d** with All<sub>3</sub>B, using <sup>119</sup>Sn-, <sup>29</sup>Si- and <sup>13</sup>C-NMR, starting from -40 °C in CDCl<sub>3</sub> solution, it proved possible to identify an





intermediate **19d**. The structure of **19d** results from 1,1allylboration, and **19d** has a reasonably long lifetime, because, its stereochemistry is wrong for cyclisation. By warming the reaction solution to room temperature, the signals for **19d** vanished and the signals for **17d** and **18d** became dominant. This finding indicates that indeed 1,1-allylboration (reversible!) is the preferred initial step, followed by intramolecular 1,2-allylboration. The intermediate **A** with M = Sn in Scheme 1 appears to have a favourable disposition for 1,2-allylboration which may take place before the intermediate **B** is really formed.



#### 3. NMR spectroscopic results

The <sup>11</sup>B-, <sup>13</sup>C-, <sup>29</sup>Si- and <sup>119</sup>Sn-NMR data listed in the Tables 1-3 (<sup>1</sup>H-NMR data are given in the Section 5) strongly support the proposed structures. In most cases it was possible to determine the coupling constants  ${}^{1}J({}^{29}\text{Si}, {}^{13}\text{C})$  either from  ${}^{29}\text{Si}$  satellite signals in the  ${}^{13}\text{C}$ -NMR spectra or from  ${}^{13}\text{C}$  satellites in the  ${}^{29}\text{Si}$ -NMR spectra, and the same applies to  ${}^{n}J({}^{119}Sn, {}^{13}C)$  for n = 1(for n > 1, the <sup>13</sup>C-NMR spectra are more reliable, since the <sup>13</sup>C satellites in the <sup>119</sup>Sn-NMR spectra close to the central line are not always well resolved). Together with the broadened <sup>13</sup>C-NMR signals, characteristic for carbon atoms linked to boron [18], the structural assignments are confirmed. Typical examples are shown in the Fig. 2. The siloles show one broad and three sharp <sup>13</sup>C-NMR signals for the ring carbon atoms. Two of the sharp signals are accompanied by <sup>29</sup>Si satellites corresponding to one-bond  ${}^{29}\text{Si}{}^{-13}\text{C}$  coupling. In the case of the 2-alkylidene-1,3-silaborole (9a) or related bicyclic derivatives 10 and the 2-alkylidene-1,3-stannaborolenes, there are two broad and two sharp signals for the ring carbon atoms. Only one of the sharp signals is accompanied by  $^{29}$ Si or  $^{117/119}$ Sn satellites corresponding to the relevant one-bond <sup>29</sup>Si-<sup>13</sup>C or <sup>117/119</sup>Sn-<sup>13</sup>C coupling. <sup>29</sup>Si-NMR spectra help to analyse complex or simple mixtures as shown in the Figs. 1 and 4, respectively. In



Fig. 2. 99.4 MHz <sup>29</sup>Si (refocused INEPT [23] with <sup>1</sup>H decoupling) NMR spectrum of **17d** in CDCl<sub>3</sub> at 303 K. The assignment of Si(A) and Si(B) is based on the magnitude of the coupling constants  $|{}^{1}J({}^{29}\text{Si}, {}^{13}\text{C}=)|$  which is smaller for Si(A) than for Si(B), confirmed by the information from <sup>13</sup>C-NMR spectra. The <sup>117/119</sup>Sn satellites are marked by arrows, and the <sup>13</sup>C satellites (Me, and C=) by asterisks.



Fig. 3. Changes in <sup>13</sup>C{<sup>1</sup>H}-NMR spectrum (125.8 MHz, CDCl<sub>3</sub>, low field region) of monocyclic compound **17d** after heating at 60 °C overnight with the formation of bicyclic compound **18d**. The numbering of carbon atoms was changed from nomenclature for simplicity; values  ${}^{1}J({}^{119}\text{Sn}, {}^{13}\text{C})$  are given in brackets.

the case of pure compounds, <sup>29</sup>Si-NMR spectra provide convincing evidence, because of their simplicity, if they are recorded with sufficient signal-to-noise ratio in order to detect satellite signals (Fig. 2).

The <sup>11</sup>B-NMR spectra show broad signals either in the range typical [19] of triorganoboranes without significant CB(pp) $\pi$  interactions, as in the case of the 3-boryl substituted siloles ( $\delta^{11}B = 82 \pm 1.5$ ), or shifted to markedly lower frequencies, because, the boron atom is part of a ring system allowing for CB(pp) $\pi$  interactions, as in the 2-alkylidene-1,3-stannaborolenes ( $\delta^{11}B = 63 \pm$ 1.5). The <sup>29</sup>Si nuclear shielding is typically low for siloles with Me<sub>3</sub>Si groups in 2,5-positions [13–16] (see Table 1), whereas the <sup>29</sup>Si nuclei in 2-alkylidene-1,3-silaborolenes are better shielded (>20 ppm), irrespective of alkyl or SiMe<sub>3</sub> substituents.

#### 4. Conclusions

There is competition between 1,1- and 1,2-allyboration. In the case of 1c and 2c, 1,2-allylboration is preferred already in the initial intermolecular step, and this suggests that the phenyl group at the C=C bond exerts a specific effect. In all the other cases, it appears that intermolecular 1,1-allylboration dominates, followed by intramolecular 1,1-vinylboration, leading to siloles, or intramolecular 1,2-allylboration, leading to the novel 2-alkylidene-1,3-stannanborolenes. At present, the factors directing the course of these reactions are not clear or predictable, although, the di(1-alkynyl)tin compounds seem to react exclusively by the combination of 1,1- and 1,2-allylboration [20]. In the course of the transformations of the silanes 2, the silicon atom becomes a chiral centre, and the diastereoselective formation of the bicyclic compounds 10(H) is certainly promising for future work.

#### 5. Experimental

#### 5.1. General and starting materials

All compounds were handled under dry argon, observing all necessary conditions to exclude air and moisture, and by using carefully dried solvents. Starting materials such as triallylborane [21], di- and polyalkynyl silanes and stannanes [13,22] were prepared according to literature procedures. The synthesis of silicon hydrides **2b**–**d** was achieved by the reaction of the respective chlorosilanes with lithium alkynides in the usual way [22]. Details will be described elsewhere [14]. NMR measurements: Bruker ARX 250 and DRX 500 [<sup>1</sup>H, <sup>11</sup>B, <sup>13</sup>C, <sup>119</sup>Sn, <sup>29</sup>Si-NMR (refocused INEPT [23] based on <sup>2</sup>J(<sup>29</sup>Si, <sup>1</sup>H<sub>Me</sub>) = 7 Hz)]. Chemical shifts are given with respect to Me<sub>4</sub>Si [ $\delta$ <sup>1</sup>H (CHCl<sub>3</sub>–CDCl<sub>3</sub>) = 7.24;  $\delta$ <sup>13</sup>C (CDCl<sub>3</sub>) = 77.0;  $\delta$ <sup>29</sup>Si = 0 for  $\Xi$ (<sup>29</sup>Si) = 19.867184 MHz], BF<sub>3</sub>-Et<sub>2</sub>O [ $\delta$ <sup>11</sup>B = 0;  $\Xi$ (<sup>11</sup>B) = 32.083971 MHz],

| Table 1                                 |           |                   |                     |            |          |        |
|-----------------------------------------|-----------|-------------------|---------------------|------------|----------|--------|
| <sup>13</sup> C-, <sup>29</sup> Si- and | 119Sn-NMR | data <sup>a</sup> | <sup>a</sup> of the | siloles 8d | , 11, 14 | and 16 |

|                 | $\delta^{29}$ Si  | $\delta^{11}\mathbf{B}$ | $\delta^{13}$ C     |                         |                   |                    |  |  |  |
|-----------------|-------------------|-------------------------|---------------------|-------------------------|-------------------|--------------------|--|--|--|
|                 |                   |                         | C(2)                | C(3)                    | C(4)              | C(5)               |  |  |  |
| 8d <sup>b</sup> | 27.3              | 82.9                    | 148.0 (62.4, 43.8)  | 182.1 br                | 164.2 (11.4, 8.9) | 141.4 (61.5, 48.9) |  |  |  |
| 11 <sup>c</sup> | 28.2              | 83.2                    | 149.4               | 179.0 br                | 165.8             | 135.2              |  |  |  |
| 14 <sup>d</sup> | n.o.              | 81.4                    | 142.1               | 184.9 br                | 167.8             | 134.9              |  |  |  |
| 16 <sup>e</sup> | 26.0 <sup>f</sup> | 83.7                    | 144.7 (55.6)[375.7] | 163.4 (11.0, 9.3) [3.5] | 181.4 [72.3] br   | 148.0 (13.7)       |  |  |  |

<sup>a</sup> In CDCl<sub>3</sub> at 30 °C;  ${}^{n}J({}^{29}\text{Si}, {}^{13}\text{C}) (\pm 0.1 \text{ Hz})$  are given in parentheses;  ${}^{n}J({}^{119}\text{Sn}, {}^{13}\text{C}) [\pm 0.2 \text{ Hz}]$  in brackets; br denotes broad signals due to partially relaxed  ${}^{13}\text{C}-{}^{10/11}\text{B}$  coupling; n.o., not observed.

<sup>b</sup>  $\delta^{13}C = 136.4, 113.9, 40.5$  (All); 136.4, 117.6, 37.2 (br) (All<sub>2</sub>B); 1.4 (50.7), 1.1 (51.1) (Me<sub>3</sub>Si); -2.2 (47.2) (Me<sub>2</sub>Si).  $\delta^{29}Si = -10.6 (10.4), -11.2 (10.3) (Me<sub>3</sub>Si).$ 

<sup>c</sup>  $\delta^{13}C = 137.1, 114.0, 40.5$  (All); 136.4, 114.9, 37.3 (br) (All<sub>2</sub>B); 115.3, 114.3 (Me<sub>3</sub>Si-C=C); 0.29, 0.31 (Me<sub>2</sub>Si); 0.21, 0.19 (Me<sub>3</sub>Si).  $\delta^{29}Si = -11.1$  (10.0) (Me<sub>3</sub>Si), -19.0 (Me<sub>3</sub>Si-C=), -30.5 (11.2) (Me<sub>2</sub>Si-C=).

<sup>d</sup>  $\delta^{13}C = 136.1, 114.2, 41.2$  (All); 135.6, 116.9, 29.7 (br) (All<sub>2</sub>B); 118.2 (Si-C=); 106.8 (=C-SiMe<sub>3</sub>); 1.4, 1.0, -0.6 (Me<sub>3</sub>Si).  $\delta^{29}Si = -8.9$  (9.5), -9.1 (9.4) (Me<sub>3</sub>Si); -18.0 (1.8) (=C-SiMe<sub>3</sub>). <sup>29</sup>Si-NMR signal was not observed by standard INEPT pulse sequence.

<sup>e</sup>  $\delta^{13}$ C = 136.4, 114.0, 42.5 [44.1] (All); 136.35, 117.2, 37.1 (br) (All<sub>2</sub>B); 1.4 (51.2) (Me<sub>3</sub>Si); -2.8 (47.2) (Me<sub>2</sub>Si); -8.2 [342.2] (Me<sub>3</sub>Sn).  $\delta^{29}$ Si = -11.0 (10.1) [2.1] (Me<sub>3</sub>Si).  $\delta^{119}$ Sn = -48.1.

 $f^{2}J(^{119}\text{Sn}, ^{29}\text{Si}) = 101.4 \text{ Hz}.$ 

Me<sub>4</sub>Sn [ $\delta^{119}$ Sn = 0;  $\Xi(^{119}$ Sn) = 37.290665 MHz]. Assignments in <sup>1</sup>H and <sup>13</sup>C-NMR spectra are based on appropriate 2D <sup>1</sup>H-<sup>1</sup>H COSY, <sup>1</sup>H-<sup>1</sup>H NOESYTP, <sup>1</sup>H-<sup>13</sup>C and <sup>1</sup>H-<sup>29</sup>Si HETCOR experiments.

#### 5.2. Reaction of the di- and polyalkynylsilanes 1a-d, 2bd, 3, and 5 with triallylborane

#### 5.2.1. General procedure

To a solution of about 2 mmol of 1a-d, 2b-d, 3, or 5 in CDCl<sub>3</sub> or pentane (2 ml) the equimolar amount of All<sub>3</sub>B was added in one portion at room temperature (r.t.); the mixture was heated several hours at 50–60 °C. The progress of the reaction was monitored by <sup>1</sup>H and <sup>29</sup>Si-NMR spectroscopy.

7: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.06$  (s, 6H, Me<sub>2</sub>Si), 2.52 (d, 4H, CH<sub>2</sub>B, 7.5), 3.01 (d, 2H, CH<sub>2</sub>, 7.0), 5.0–5.1 (m, 6H, =CH<sub>2</sub>), 5.77 (ddt, 1H, =CH–, 17.5, 9.4, 7.0), 6.21 (ddt, 2H, =CH–{B}, 17.2, 10.2, 7.5), 7.2–7.5 (m, 6H, Ph), 7.51 (dd, 2H, Ph, 7.8, 2.0), 7.59 (dd,

2H, Ph, 7.9, 2.1). <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>,  $J({}^{13}C-{}^{29}Si)$ , Hz);  $\delta = 0.8$  (Me<sub>2</sub>Si, 57.5), 36.4 (br, CH<sub>2</sub>B), 48.0 (CH<sub>2</sub>); 94.4 ( $\equiv$ C-Si, 81.4), 106.3 ( $\equiv$ C-Ph, 15.2), 123.1; 127.7; 128.2; 128.3; 128.55, 128.61, 131.7 (Ph; not assigned), 144.5 (=C-Si, 66.7); 148.2 (br, =C-B); 150.5 (Ph). <sup>29</sup>Si-NMR (99.6 MHz, CDCl<sub>3</sub>):  $\delta = -$  33.4. <sup>11</sup>B-NMR (160 MHz, CDCl<sub>3</sub>):  $\delta = 81.2$ .

7(H): <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.04$  (d, 3H, MeSi, 3.8), 2.56 (d, 4H, CH<sub>2</sub>B, 7.6), 3.11 (dd, 1H, CH<sub>2</sub>, 15.3, 7.0), 3.22 (dd, 1H, CH<sub>2</sub>, 15.3, 7.0), 4.45 (q, 1H, SiH, 3.8, <sup>*I*</sup>*J*(<sup>29</sup>Si, <sup>1</sup>H) = 213.5 Hz), 5.1–5.2 (m, 6H, =CH<sub>2</sub>), 5.89 (ddt, 1H, =CH–, 17.0, 10.0, 7.0), 6.26 (ddt, 2H, =CH–, 16.8, 10.3, 7.6), 7.4–7.6 (m, 10H, Ph). <sup>13</sup>C-NMR (125.8 MHz, CDCl<sub>3</sub>, *J*(<sup>13</sup>C–<sup>29</sup>Si), Hz):  $\delta = -$  3.5 (MeSi, 57.7); 36.3 (br., CH<sub>2</sub>B); 46.9 (CH<sub>2</sub>, 8.1); 90.9 (=C–Si, 83.9); 107.1 (=C–Ph, 14.8); 113.6 (=CH<sub>2</sub>); 118.6 (=CH<sub>2</sub>); 127.0, 127.93, 127.95, 128.2; 128.7 (Ph; not assigned); 135.2 (=CH–); 136.8 (=CH–). <sup>29</sup>Si-NMR (99.6 MHz, CDCl<sub>3</sub>):  $\delta = -53.2$ . <sup>11</sup>B-NMR (160 MHz, CDCl<sub>3</sub>):  $\delta = 81.0$ .

Table 2

| rauc              | · _                   |           |             |               |                 |                 |         |                     |                |      |
|-------------------|-----------------------|-----------|-------------|---------------|-----------------|-----------------|---------|---------------------|----------------|------|
| <sup>13</sup> C-, | <sup>29</sup> Si- and | 119Sn-NMR | data a of t | he 2-(but-3-6 | en-1-ylidene)-1 | ,3-silaborolene | a and - | -1,3-stannaborolene | derivatives 1' | 7a,d |

|                                                         | $\delta^{13}$ C                          | $\delta^{119} Sn$                | $\delta^{11} B$                                       |                                       |                |                      |
|---------------------------------------------------------|------------------------------------------|----------------------------------|-------------------------------------------------------|---------------------------------------|----------------|----------------------|
|                                                         | C(2)                                     | C(4)                             | C(5)                                                  | C(6)                                  |                |                      |
| 9a <sup>b</sup><br>17a <sup>c</sup><br>17d <sup>d</sup> | 142.3 br<br>152.4 br<br>180.3 br [108.7] | 163.2 br<br>162.4 br<br>181.7 br | 174.2 (65.3)<br>172.3 [446.0]<br>170.2 [267.5] (55.7) | 163.8<br>156.6<br>159.4 [27.2] (61.8) | -38.9<br>-78.8 | 64.0<br>62.4<br>64.4 |

<sup>a</sup> In CDCl<sub>3</sub> at 23 °C;  ${}^{n}J({}^{29}Si, {}^{13}C) (\pm 0.1 \text{ Hz})$  are given in parentheses;  ${}^{n}J({}^{119}Sn, {}^{13}C) [\pm 0.2 \text{ Hz}]$  in brackets; br denotes broad signals due to partially relaxed  ${}^{13}C-{}^{10/11}B$  coupling.

<sup>b</sup>  $\delta^{13}C = 137.0, 136.7, 115.0, 114.1, 44.1, 33.4$  (All); 135.1, 116.1, 29.3 (br) (AllB); 27.6, 15.7 (Me); -2.5 (48.2) (Me<sub>2</sub>Si);  $\delta^{29}Si = -2.3$ .

 $^{c}$   $\delta^{13}C = 137.6$  [9.7], 137.0, 116.0, 114.2, 45.0 [76.3], 34.1 [64.9] (All); 136.3, 114.3 (br), 30.8 (br) (AllB); 31.7 [58.2], 21.1 [62.8] (Me); -8.3 [303.1] (Me<sub>2</sub>Sn).

<sup>d</sup>  $\delta^{13}C = 137.6$  [9.6], 136.5, 116.3, 115.6, 48.3 [78.5], 43.2 [111.8], (All); 137.8, 113.5, 32.5 (br) (AllB); 1.4 (50.9) [12.3], 0.6 (50.9) (Me<sub>3</sub>Si); -4.7 [285.9] (Me<sub>2</sub>Sn).  $\delta^{29}Si = -5.9$  [99.1], -10.2 [71.8].

| Table 3                                                            |                                         |                              |                                                 |         |
|--------------------------------------------------------------------|-----------------------------------------|------------------------------|-------------------------------------------------|---------|
| <sup>13</sup> C-, <sup>29</sup> Si- and <sup>119</sup> Sn-NMR data | <sup>a</sup> of the 1-bora-7-sila- (10a | a, 10b, 10d, 12, 13, 15) and | 1-bora-7-stannabicyclo[4.3.0]nona-5,8-dienes (1 | 18a, d) |

|                     | $\delta^{13}C$ |            | $\delta^{29}$ Si | $\delta^{119} \mathrm{Sn}$ |          |                    |          |                  |       |
|---------------------|----------------|------------|------------------|----------------------------|----------|--------------------|----------|------------------|-------|
|                     | C(2)           | C(3)       | C(4)             | C(5)                       | C(6)     | C(8)               | C(9)     | -                |       |
| 10a <sup>b</sup>    | 26.9 br        | 34.0       | 36.0 (7.4)       | 174.9                      | 159.4 br | 169.4 (44.8)       | 136.3 br | -2.1             |       |
| 10b <sup>c</sup>    | 26.5 br        | 36.5       | 36.6 (6.8)       | 184.9                      | 159.4 br | 182.9 (66.5)       | 133.2 br | -1.5             |       |
| 10d <sup>d</sup>    | 26.7 br        | 35.2       | 42.0 (7.6)       | 182.2 (64.1)               | 157.7 br | 183.0 (63.2, 51.4) | 177.8 br | 2.7 (10.1, 5.3)  |       |
| 12 <sup>e</sup>     | 26.7 br        | 35.2       | 40.6 (9.7)       | 176.7 (70.1)               | 159.7 br | 193.8 (60.0, 46.7) | 177.6 br | 3.4 (10.3, 5.6)  |       |
| 13 <sup>f</sup>     | 28.7 br        | 35.1       | 39.3 (8.8)       | 181.7 (63.5)               | 160.8 br | 183.3 (55.1, 52.0) | 183.7 br | -4.1 (12.3, 5.6) |       |
| 15 <sup>g</sup>     | 26.5 br        | 34.9       | 42.1 (8.9)       | 188.7 (60.3)               | 150.4 br | 176.0 (65.3, 54.8) | 180.1    | n.o.             |       |
| 18a h               | 26.5 br        | 34.2       | 42.3 [62.3]      | 170.9 [14.5]               | 158.6 br | 178.5 [446.8]      | 190.2 br | -                | -28.5 |
| 18d <sup>i</sup>    | 28.4 br        | 35.2 [9.5] | 41.9 [86.8]      | 187.1 [46.3]               | 159.4 br | 189.1 [294.7]      | 178.4 br | -                | -7.6  |
| 10(H)b <sup>k</sup> | 26.3 br        | 36.38      | 36.39 (8.4)      | 182.8 (<4)                 | 159.9 br | 184.5 (66.3)       | 129.7 br | -21.5            |       |
| 10(H)d $^1$         | 26.6 br        | 35.1       | 40.9 (8.1)       | 179.9 (52.2)               | 154.3 br | 184.0 (62.5)       | 179.5 br | -16.7 (9.8, 5.0) |       |

<sup>a</sup> In CDCl<sub>3</sub> at 30 °C;  ${}^{n}J({}^{29}\text{Si}, {}^{13}\text{C}) (\pm 0.1 \text{ Hz})$  are given in parentheses;  ${}^{n}J({}^{119}\text{Sn}, {}^{13}\text{C}) [\pm 0.2 \text{ Hz}]$  in brackets; br denotes broad signals due to partially relaxed  ${}^{13}\text{C}-{}^{10/11}\text{B}$  coupling.

<sup>b</sup>  $\delta^{13}C = 137.8, 137.1, 115.4, 113.8, 43.5, 42.6$  (All); 28.3, 15.6 (Me); -2.9 (48.2), -2.9 (48.6) (Me<sub>2</sub>Si).  $\delta^{11}B = 66.2$ .

 $^{\circ}\delta^{13}$ C = 138.1, 137.8, 116.2, 115.3, 43.4, 39.7 (All); 41.4, 41.2, 31.6, 29.9 (*t*-Bu); 3.3 (49.3), 2.7 (49.3) (Me<sub>2</sub>Si).  $\delta^{11}$ B = 67.5.

<sup>d</sup>  $\delta^{13}$ C = 137.6, 137.6, 115.4, 115.1, 43.3, 40.6 (All); 1.3 (50.7), -0.5 (50.7) (Me<sub>3</sub>Si); 0.4 (43.0), -0.2 (43.0) (Me<sub>2</sub>Si).  $\delta^{29}$ Si = -5.9, -11.0 (Me<sub>3</sub>Si).  $\delta^{11}$ B = 63.7.

<sup>e</sup>  $\delta^{13}C = 137.7, 137.6, 115.5, 115.1, 43.3, 41.5$  (All); 116.6 (76.3, 11.9), 112.8 (78.9, 12.3) (Me<sub>3</sub>Si-C=C-); 1.3 (50.3), 0.2 (51.2) (Me<sub>2</sub>Si); -0.16 (56.4), -0.4 (54.7) (Me<sub>3</sub>Si); -0.4 (50.8), -3.5 (48.5) (Me<sub>2</sub>Si).  $\delta^{29}Si = -10.9$  (Me<sub>3</sub>Si); -18.7 (1.8) (Me<sub>3</sub>Si-C=); -26.8 (1.8) (Me<sub>2</sub>Si-C=).  $\delta^{11}B = 63.8$ .

<sup>f</sup>  $\delta^{13}$ C = 167.1 (All-C =); 143.7 (61.3, 49.0) (Me<sub>3</sub>Si - C =); 137.6, 137.1, 115.5, 115.4, 43.2, 41.4 (All); 1.1 (51.2), -0.4 (52.0) (Me<sub>3</sub>Si); 0.8 (48.5), 0.5 (48.5), -0.6 (50.3), -3.3 (51.2) (Me<sub>2</sub>Si).  $\delta^{29}$ Si = 15.1 (12.3, 9.7) (Me<sub>2</sub>Si); -5.9, -10.8 (Me<sub>3</sub>Si).  $\delta^{11}$ B = 63.8.

 ${}^{g} \delta^{13}C = 137.4, 136.9, 115.6, 115.6, 43.21 40.8 \text{ (All)}; 117.1, 116.9 (=C-Si); 110.5 (11.8), 110.1 (12.2) (=C-SiMe_3); 1.1 (51.1), -0.4 (56.4), -0.5 (56.2), -0.7 (51.3) (Me_3Si). \\ \delta^{29}Si = -2.2 (5.7), -8.9 (9.4) (SiMe_3); -18.3 (1.8), -18.4 (1.8) (=C-SiMe_3). \\ \delta^{11}B = 64.0.$ 

<sup>h</sup>  $\delta^{13}C = 137.9, 137.6, 115.3, 113.6, 43.5$  [5.0], 36.0 [6.0] (All); 32.6 [52.9], 21.3 [62.3] (Me); -9.3 [302.7], -9.41 [298.7],  $\delta^{11}B = 61.8$ .

<sup>i</sup>  $\delta^{13}$ C = 138.4 [9.5], 137.6, 115.4, 114.9, 43.3 [7.6], 42.2 [87.8] (All); 1.4 (50.5), 1.3 (51.0) (Me<sub>3</sub>Si); -4.7 [289.4], -5.2 [290.4] (Me<sub>2</sub>Sn).  $\delta^{29}$ Si = -5.1 [53.5], -8.7 [84.6].  $\delta^{11}$ B = 62.9.

<sup>k</sup>  $\delta^{13}$ C = 137.8, 134.8, 115.4, 114.9, 42.4, 38.6 (All); 38.5, 37.4 (9.1) (CMe<sub>3</sub>); 31.3, 29.6 (CMe<sub>3</sub>); 0.1 (50.1) (MeSi).  $\delta^{11}$ B = 71.0.

 $^{1} \delta^{13}$ C = 137.5, 137.3, 115.5, 115.2, 42.7, 41.0 (7.6) (All); 0.9 (50.8), -0.9 (50.7) (Me<sub>3</sub>Si); -2.2 (46.2) (MeSi).  $\delta^{11}$ B = 64.9.  $\delta^{29}$ Si = -3.9 (5.0), -10.3 (9.8) (Me<sub>3</sub>Si).



Fig. 4. <sup>29</sup>Si-NMR (99.4 MHz) (refocused INEPT [23] with <sup>1</sup>H decoupling) spectrum of the product mixture (**8d** and **10d**) obtained from the reaction of **1d** with triallylborane in CDCl<sub>3</sub> at room temperature.

**8d**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.08$  (s, 9H, Me<sub>3</sub>Si) 0.16 (s, 9H, Me<sub>3</sub>Si), 0.23 (s, 6H, Me<sub>2</sub>Si); 2.32

(dd, 4H, CH<sub>2</sub>B, 17.4, 7.5), 3.08 (dd, 2H, CH<sub>2</sub>, 5.5, 2.4), 4.89–5.05 (m, 6H, CH<sub>2</sub>=); 5.90 (m, 3H, CH=).

**9a**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.19$  (s, 6H, Me<sub>2</sub>Si); 1.98 (s, 3H, Me); 2.03 (s, 3H, Me); 2.45 (dt, 2H, CH<sub>2</sub>B, 7.4, 1.6); 3.17 (dt, 2H, CH<sub>2</sub>, 5.9, 1.8); 3.26 (dt, 2H, CH<sub>2</sub>, 6.5, 1.5); 4.8–5.1 (m, 6H, =CH<sub>2</sub>); 5.8–6.0 (m, 3H, –CH=).

**10a**: <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.14$ , 0.15 (s,s 6H, Me<sub>2</sub>Si), 0.67 (dd, 1H, H-1, 17.1, 12.1), 1.58 (ddd, 1H, H-2, 17.1, 4.1, 1.2), 1.7–2.1 (m, 4H, H-3,4,6,7), 1.97 (s, 3H, Me), 1.99 (s, 3H, Me), 2.27 (ddd, 1H, H-5, 16.9, 3.6, 1.0), 3.08 (dt, 2H, H-11,12, 6.3, 1.5), 4.87 (ddt, 2H, =CH<sub>2</sub>-*trans*, 13.7, 2.0, 1.8), 5.02 (ddt, 2H, =CH<sub>2</sub>-*cis*, 6.8, 2.0, 1.3); 5.79 (m, 2H, –CH=).

**10b**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.32$ , 0.42 (s,s, 6H, Me<sub>2</sub>Si), 0.69 (dd, 1H, H-1, 17.7, 12.9), 1.17 (s, 9H, *t*-Bu), 1.28 (s, 9H, *t*-Bu), 1.59 (ddd, 1H, H-2, 17.7, 3.8, 1.5), 1.60 (m, 1H, H-3), 1.85 (dd, 1H, H-4, 16.8, 10.5), 2.06 (m, 2H, H-6,7), 2.55 (ddd, 1H, H-5, 16.8, 3.5, 1.7), 3.38 (dt, 2H, H-11,12, 6.2, 1.5), 4.8–5.1 (m, 4H, =CH<sub>2</sub>), 5.81 (ddt, 1H, H-8, 17.5, 10.4, 6.5), 5.84 (ddt, 1H, H-13, 16.6, 10.1, 6.2).

**10(H)b**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.42$  (d, 3H, MeSi, 3.4), 0.96 (dd, 1H, H-1, 16.8, 10.2), 1.22 (s,

9H, *t*-Bu), 1.32 (s, 9H, *t*-Bu), 1.54 (dd, 1H, H-2, 16.8, 4.0), 1.81 (m, 1H, H-3), 2.05 (dd, 1H, H-4, 16.8, 9.0), 2.08 (m, 2H, H-6,7), 2.55 (dd, 1H, H-5, 16.8, 3.8), 3.33 (ddt, 1H, H-8, 15.2, 5.8, 1.6), 3.40 (ddt, 1H, H-9, 15.2, 5.6, 1.8), 4.55 (q, 1H, SiH, 3.4,  ${}^{1}J({}^{29}\text{Si},{}^{1}\text{H}) = 201.3 \text{ Hz})$ , 4.9–5.0 (m, 4H, =CH<sub>2</sub>), 5.8–6.0 (m, 2H, =CH).

**10d**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.18$  (s, 9H, Me<sub>3</sub>Si); 0.26 (s, 9H, Me<sub>3</sub>Si); 0.29, 0.30 (s,s, 3H, Me<sub>2</sub>Si), 0.78 (dd, 1H, H-1, 17.3, 12.2), 1.65 (m, 1H, H-3), 1.68 (dd, 1H, H-2, 17.3, 4.0), 1.93 (dd, 1H, H-4, 17.5, 10.4); 2.07 (m, 2H, H-6,7), 2.65 (dd, 1H, H-5, 17.5, 3.8), 3.31 (m, 2H, H-11,12), 4.90-5.05 (m, 3H, =CH<sub>2</sub>), 5.09 (d, 1H, =CH<sub>2</sub>, 10.2); 5.77 (m, 2H, -CH=).

**10(H)d:** <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.25$  (s, 9H, Me<sub>3</sub>Si), 0.29 (s, 9H, Me<sub>3</sub>Si), 0.34 (d, 3H, MeSi, 3.5), 1.03 (dd, 1H, H-1, 16.3, 10.1), 1.67 (dd, 1H, H-2, 16.3, 3.7), 1.82 (m, 1H, H-3), 2.10 (m, 2H, H-6,7), 2.13 (dd, 1H, H-4, 17.5, 9.0), 2.67 (dd, 1H, H-5, 17.5, 3.7), 3.36 (m, 2H, H-11,12), 4.83 (q, 1H, SiH, 3.5, <sup>1</sup>*J*(<sup>29</sup>Si, <sup>1</sup>H) = 187.0 Hz), 4.9–5.0 (m, 4H, =CH<sub>2</sub>), 5.8–6.0 (m, 2H, =CH).

**11**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.19$  (s, 9H, Me<sub>3</sub>Si); 0.21 (s, 9H, Me<sub>3</sub>Si), 0.29, 0.31 (s,s 6H, Me<sub>2</sub>Si), 2.33 (dd, 2H, CH<sub>2</sub>B, 17.7, 7.6), 2.40 (dd, CH<sub>2</sub>B, 17.7, 7.5), 3.20 (dt, 2H, CH<sub>2</sub>, 5.8, 1.8), 4.8–5.1 (m, 6H, = CH<sub>2</sub>), 5.8–6.0 (m, 3H, –CH=).

**12**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.18$  (s, 9H, Me<sub>3</sub>Si), 0.20 (s, 9H, Me<sub>3</sub>Si), 0.26, 0.27 (s,s, 6H, Me<sub>2</sub>Si), 0.33 (s, 6H, Me<sub>2</sub>Si), 1.02 (dd, 1H, H-1, 17.4, 12.0), 1.68 (m, 1H, H-3), 1.90 (d, 1H, H-4, 17.2), 1.97 (ddd, 1H, H-2, 17.4, 2.6, 1.5), 2.08 (m, 2H, H-6,7), 2.62 (ddd, 1H, H-5, 17.2, 3.7, 1.4), 3.28 (ddt, 1H, H-11(12), 14.5, 6.0, 1.8), 3.33 (ddt, 1H, H-12(11), 14.5, 6.2, 1.7), 4.8–5.1 (m, 4H, =CH<sub>2</sub>), 5.8–6.0 (m, 2H, H-8, 13).

**13**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.19$  (s, 9H, Me<sub>3</sub>Si), 0.23 (s, 9H, Me<sub>3</sub>Si), 0.27, 0.37 (s,s, 6H, Me<sub>2</sub>Si), 0.36 (s, 6H, Me<sub>2</sub>Si), 0.80 (dd, 1H, H-1, 17.2, 13.4), 1.69 (ddd, 1H, H-2, 17.2, 3.8, 1.5), 1.70 (m, 1H, H-3), 1.96 (d, 1H, H-4, 17.5), 2.08 (m, 2H, H-6,7), 2.75 (ddd, 1H, H-5, 17.5, 3.6, 1.4), 3.46 (ddt, 1H, H-11(12), 16.0, 5.2, 2.0), 3.53 (ddt, 1H, H-12(11), 16.0, 5.0, 2.0), 4.8-5.1 (m, 4H, =CH<sub>2</sub>), 5.8-6.0 (m, 2H, H-8, 13).

14: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.18$  (s, 9H, Me<sub>3</sub>Si), 0.20 (s, 9H, Me<sub>3</sub>Si), 0.22 (s, 18H, Me<sub>3</sub>Si), 2.32 (dd, 2H, CH<sub>2</sub>{B}, 18.1, 7.5), 2.39 (dd, 2H, CH<sub>2</sub>{B}, 18.1, 7.5), 3.28 (d, 2H, CH<sub>2</sub>, 6.3), 4.9–5.0 (m, 6H, = CH<sub>2</sub>), 5.7–6.0 (m, 3H, –CH=).

**15**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.16$  (s, 9H, Me<sub>3</sub>Si), 0.16 (s, 9H, Me<sub>3</sub>Si), 0.31 (s, 9H, Me<sub>3</sub>Si), 0.33 (s, 9H, Me<sub>3</sub>Si), 0.80 (dd, 1H, H-1, 17.4, 12.5), 1.67 (dd, 1H, H-2, 17.4, 4.0), 1.72 (m, 1H, H-3), 1.98 (dd, 1H, H-4, 17.8, 10.4), 2.07 (m, 2H, H-6,7), 2.69 (dd, 1H, H-5, 17.8, 4.0), 3.31 (m, 2H, H-11,12), 4.85-5.05 (m, 4H, H-9,10,14,15), 5.79 (m, 1H, H-8), 5.83 (m, 1H, H-13).

5.3. Reaction of the di(1-alkynyl)silane (4) and the di(1-alkynyl)stannanes 6a,d with triallylborane

#### 5.3.1. General procedure

To a solution of **4** or **6a,d** (2 mmol) in CDCl<sub>3</sub> or pentane (2 ml) the equimolar amount of All<sub>3</sub>B was added in one portion at -78 °C; the mixture was warmed to r.t. The progress of the reaction was monitored by <sup>1</sup>H-, <sup>29</sup>Si- and <sup>119</sup>Sn-NMR spectroscopy.

**16**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.08$  (s, 9H, Me<sub>3</sub>Si), 0.18 (s, 9H, Me<sub>3</sub>Sn, <sup>2</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 54.2Hz); 0.23 (s, 6H, Me<sub>2</sub>Si), 2.33 (dd, 2H, CH<sub>2</sub>B, 17.5, 7.5), 2.40 (dd, 2H, CH<sub>2</sub>B, 17.5, 7.5), 3.01 (dt, 2H, CH<sub>2</sub>, 5.7, 1.9), 4.90 (m, 4H, =CH<sub>2</sub>), 5.00 (ddd, 1H, = CH<sub>2</sub>-*trans*, 17.2, 3.8, 1.9), 5.08 (ddd, 1H, =CH<sub>2</sub>-*cis*, 10.2, 3.7, 1.8), 5.78 (m, 1H, -CH=), 5.92 (m, 2H, -CHB).

**17a**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.33$  (s, 6H, Me<sub>2</sub>Sn, <sup>2</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 53.8 Hz), 2.01 (s, 3H, Me, <sup>4</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 8.8 Hz), 2.17 (s, 3H, Me, <sup>3</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 48.7 Hz), 2.41 (d, 2H, CH<sub>2</sub>, 7.5), 3.16 (d, 2H, CH<sub>2</sub>, 6.7), 3.19 (dt, 2H, CH<sub>2</sub>, 5.8, 1.5), 4.8–5.2 (m, 6H, = CH<sub>2</sub>), 5.8–5.9 (m, 3H, –CH=).

**17d:** <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.11$  (s, 9H, Me<sub>3</sub>Si), 0.16 (s, 9H, Me<sub>3</sub>Si), 0.35 (s, 9H, Me<sub>2</sub>Sn, <sup>2</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 53.9 Hz), 2.27 (dt, 2H, CH<sub>2</sub>B, 7.8, 1.4), 3.04 (dt, 2H, CH<sub>2</sub>, <sup>4</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 15.7 Hz, 6.2, 1.5), 3.29 (dt, 2H, CH<sub>2</sub>, <sup>4</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 14.5 Hz, 6.6, 1.7), 4.79 (ddt, 1H, =CH<sub>2</sub>-*cis*, 10.1, 2.1, 1.5), 4.85 (ddt, 1H, =CH<sub>2</sub>-*trans*, 16.9, 2.2, 1.5), 4.99 (ddt, 1H, =CH<sub>2</sub>-*cis*, 10.1, 2.0, 1.4), 5.0–5.1 (m, 3H, =CH<sub>2</sub>), 5.72 (m, 2H, =CH–), 5.84 (ddt, 1H, =CH–, 16.9, 10.1, 6.7).

**18a**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.27$  (s, 6H, Me<sub>2</sub>Sn, <sup>2</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 53.5 Hz), 0.72 (dd, 1H, H-1, 17.1, 12.0), 1.63 (dd, 1H, H-2, 17.1, 3.8), 1.80 (m, 1H, H-3), 1.94 (dd, 1H, H-4, 17.2, 10.4), 2.04 (s, 3H, Me, <sup>4</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 9.3 Hz), 2.10 (m, 2H, H-6,7), 2.20 (s, 3H, Me, <sup>3</sup>*J*(<sup>119</sup>Sn, <sup>1</sup>H) = 44.0 Hz), 2.36 (dd, 1H, H-5, 17.2, 4.0), 3.13 (d, 2H, H-11,12, 6.1), 4.9–5.1 (m, 4H, =CH<sub>2</sub>), 5.8–5.9 (m, 2H, –CH=).

**18d**: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>, *J*, Hz):  $\delta = 0.11$  (s, 3H, MeSn), 0.12 (s, 3H, MeSn); 0.21 (s, 9H, Me<sub>3</sub>Si), 0.39 (s, 9H, Me<sub>3</sub>Si), 0.84 (dd, 1H, H-1, 17.2, 12.0), 1.66 (m, 1H, H-3), 1.75 (ddd, 1H, H-2, 17.2, 3.7, 1.2), 1.95 (dd, 1H, H-4, 17.2, 10.5), 2.07 (m, 2H, H-6,7), 2.67 (ddd, 1H, H-5, 17.2, 3.8, 1.4), 3.28 (ddt, 1H, H-11, 14.5, 5.9, 1.6), 3.35 (ddt, 1H, H-12, 14.5, 6.1, 1.7), 4.8–5.1 (m, 4H, = CH<sub>2</sub>), 5.7–5.9 (m, 2H, =CH–).

#### Acknowledgements

Support of this work by DAAD (M.H.B.), Alexandervon-Humbolt Stiftung (S.A.), Volkswagenstiftung (B.W., O.L.T., Yu.N.B.), Deutsche Forschungsgemeinschaft (B.W.) and the Fonds der Chemischen Industrie (B.W.) is gratefully acknowledged.

#### References

- [1] B. Wrackmeyer, Coord. Chem. Rev. 145 (1995) 125.
- [2] (a) B. Wrackmeyer, Revs. Silicon Germanium Tin Lead Compounds 6 (1982) 75;
  (b) B. Wrackmeyer, in: S. Heřmanek (Ed.), Boron Chemistry— Proceedings of the Sixth International Meeting on Boron Chemistry, World Scientific, Singapore, 1987, pp. 387–415;
  (c) B. Wrackmeyer, in: W. Siebert (Ed.), Advances in Boron Chemistry, Royal Society of Chemistry, Cambridge, 1997, pp. 73–83.
- [3] For general reviews on metalloles see (a) J. Dubac, A. Laporterrie, G. Manuel, Chem. Rev. 90 (1990) 215.(b) J. Dubac, C Guerin, P. Meunier, in: Z. Rappaport, Y. Apeloig (eds.), Chemistry of Organic Silicon Compounds, Wiley, Chichester, 1998, pp. 1961– 2036.(c) D.A. Armitage, in: C.W. Bird (ed.), Comprehensive Heterocyclic Chemistry, Elsevier, Oxford, 1996, pp. 903–918.
- [4] (a) B. Wrackmeyer, K. Horchler, R. Boese, Angew. Chem. 101 (1989) 1563;

(b) B. Wrackmeyer, K. Horchler, R. Boese, Angew. Chem. Int. Ed. Engl. 28 (1989) 1500.

[5] (a) B. Wrackmeyer, G. Kehr, R. Boese, Angew. Chem. 103 (1991) 1374;

(b) B. Wrackmeyer, G. Kehr, R. Boese, Angew. Chem. Int. Ed. Engl. 30 (1991) 1370.

[6] (a) B. Wrackmeyer, S. Kundler, R. Boese, Chem. Ber. 126 (1993) 1361;

(b) B. Wrackmeyer, S. Kundler, W. Milius, R. Boese, Chem. Ber. 127 (1994) 333;

(c) B. Wrackmeyer, K. Horchler von Locquenghien, S. Kundler, J. Organomet. Chem. 503 (1995) 289.

[7] (a) B. Wrackmeyer, K. Horchler, A. Sebald, L.H. Merwin, Magn. Reson. Chem. 28 (1990) 465;

(b) B. Wrackmeyer, G. Kehr, A. Sebald, J. Kümmerlen, Chem. Ber. 125 (1992) 1597;

(c) B. Wrackmeyer, G. Kehr, S. Ali, Inorg. Chim. Acta 216 (1994) 51.

[8] (a) L. Killian, B. Wrackmeyer, J. Organomet. Chem. 132 (1977) 213;

(b) L. Killian, B. Wrackmeyer, J. Organomet. Chem. 148 (1978) 137;

- (c) B. Wrackmeyer, J. Organomet. Chem. 364 (1989) 331;
- (d) A. Sebald, B. Wrackmeyer, J. Chem. Soc. Chem. Commun. (1983) 1293.;
- (e) A. Sebald, B. Wrackmeyer, J. Organomet. Chem. 304 (1986) 271;

(f) A. Sebald, B. Wrackmeyer, J. Organomet. Chem. 307 (1986) 157;

(g) B. Wrackmeyer, J. Chem. Soc. Chem. Commun. (1986) 397.;
(h) B. Wrackmeyer, G. Kehr, R. Boese, Chem. Ber. 125 (1992) 643;

(i) B. Wrackmeyer, U. Klaus, W. Milius, E. Klaus, T. Schaller, J. Organomet. Chem. 517 (1996) 235.

- [9] (a) B.M. Mikhailov, Y.N. Bubnov, Organoboron Compounds in Organic Synthesis, Harwood, Chur, 1984;
  (b) Y.N. Bubnov, Pure Appl. Chem. 59 (1988) 895;
  (c) Y.N. Bubnov, M.E. Gurski, I.D. Gridnev, A.V. Ignatenko, Y.A. Ustynyuk, V.I. Mstislavsky, J. Organomet. Chem. 424
- (1992) 127.[10] (a) B. Wrackmeyer, O.L. Tok, Y.N. Bubnov, Angew. Chem. 111 (1999) 214;

(b) B. Wrackmeyer, O.L. Tok, Y.N. Bubnov, Angew. Chem. Int. Ed. Engl. 38 (1999) 124.

- [11] B. Wrackmeyer, O.L. Tok, Y.N. Bubnov, J. Organomet. Chem. 580 (1999) 234.
- [12] B. Wrackmeyer, O.L. Tok, E. Klimkina, Y.N. Bubnov, Inorg. Chim. Acta 300-302 (2000) 169.
- [13] R. Köster, G. Seidel, J. Süß, B. Wrackmeyer, Chem. Ber. 126 (1993) 1107.
- [14] B. Wrackmeyer, M.H. Bhatti, S. Ali, manuscript in preparation.
- [15] B. Wrackmeyer, G. Kehr, J. Süß, E. Molla, J. Organomet. Chem. 562 (1998) 207.
- [16] (a) B. Wrackmeyer, G. Kehr, J. Süß, Chem. Ber. 126 (1993) 2221;
  (b) B. Wrackmeyer, G. Kehr, J. Süß, E. Molla, J. Organomet. Chem. 577 (1999) 82.
- [17] B. Wrackmeyer, H.E. Maisel, J. Süß, W. Milius, Z. Naturforsch. Teil B 51 (1996) 1320.
- [18] (a) B. Wrackmeyer, Prog. NMR Spectrosc. 12 (1979) 227;
  (b) B. Wrackmeyer, Ann. Rep. NMR Spectrosc. 20 (1988) 61;
  (c) B. Wrackmeyer, Polyhedron 5 (1986) 1709.
- [19] (a) H. Nöth, B. Wrackmeyer, in: P. Diehl, E. Fluck, R. Kosfeld (Eds.), NMR—Basic Principles and Progress, vol. 14, Springer, Berlin, 1978;
  (b) B. Wrackmeyer, Ann. Rep. NMR Spectrosc. 20 (1988) 61–

(b) B. Włacknieger, Ann. Rep. NWR Spectrosc. 20 (1968) 61– 203.

- [20] B. Wrackmeyer, A. Pedall, W. Milius, O.L. Tok, Y.N. Bubnov, J. Organomet. Chem. 649 (2002) 232.
- [21] V.S. Schroeder, K.-H. Thiele, Z. Anorg. Allg. Chem. 428 (1977) 225.
- [22] (a) W.E. Davidsohn, M.C. Henry, Chem. Rev. 67 (1967) 73;
  (b) M.E. Freeburger, L. Spialter, J. Org. Chem. 35 (1970) 652;
  (c) H. Schmidbaur, J. Ebenhöch, G. Müller, Z. Naturforsch. Teil B 43 (1988) 49.
- [23] (a) G.A. Morris, R. Freeman, J. Am. Chem. Soc. 101 (1979) 760;
  (b) G.A. Morris, J. Am. Chem. Soc. 102 (1980) 428;
  (c) D.P. Burum, R.R. Ernst, J. Magn. Reson. 39 (1980) 163.